DEVELOPMENT OF A FUEL CONSUMPTION AND EMISSIONS TAXONOMY FOR NONROAD DIESEL EQUIPMENT (16-6242)

Phil Lewis, PhD, PE

Oklahoma State University

Heni Fitriani, PhD

University of Sriwijaya (Indonesia)

Yongwei Shan, PhD

Oklahoma State University

Heavy Duty Diesel Equipment Emissions

Diesel Emissions Impacts

H E A L T H

> E N V

R O N M E N

Т

Asthma

Smog

Acid Rain

Heart/Lung Issues

Global Warming

EPA Diesel Emissions Regulations

Current Events

Based on Global Observations through 2014

Claims global averages of CO_2 in the atmosphere reached new highs in 2014

Volkswagen: The scandal explained

By Russell Hotten Business reporter, BBC News

() 10 December 2015 Business

Used "defeat devices" to falsify emissions data

EPA Strengthens Ozone Standards

Oct 01, 2015

Ground-level ozone 75 ppb -> 70 ppb

Management

Equipment Taxonomy

Diesel Fuel

Diesel fuel is the lifeblood of the equipment It is expensive and its price is hard to predict

Weekly U.S. No. 2 Diesel Ultra Low Sulfur Retail Prices (Source: U.S. Energy Information Administration, 2015)

Estimating Fuel Use

We can't predict fuel prices but we can estimate quantity

- Fuel Efficiency
 - Unit of work per unit of fuel (tons/gallon) like mpg for cars
 - Hard to compute most equipment fleet managers don't bother
- Fuel Burn Rate (or Fuel Use or Fuel Consumption)
 - Most accurately measured in field, but time consuming
 - $FC = FF \times HP \times LF$ (1)
 - FC = hourly fuel consumption rate (gal/h)
 - FF = fuel factor (gal/hp-h)
 - HP = engine rated horsepower (hp)
 - LF = engine load factor (%)

Estimating Fuel Use

Equipment Handbooks provide <u>some</u> guidance for FF

BACKHOE LOADERS						
Model	Lo	w	Medium		Hi	gh
	liter	U.S. gal	liter	U.S. gal	liter	U.S. gal
416E (Tier 2) 56 kW/ 75 hp	1.9-7.9	0.5-2.1	7.9-12.1	2.1-3.2	12.1-14.4	3.2-3.8
416E (Tier 2) 68.5 kW/92 hp	2.6-11.7	0.7-3.1	11.7-16.7	3.1-4.4	16.7-18.9	4.4-5.0
416F (Tier 4 Interim) 70 kW/94 hp	2.6-12.4	0.7-3.3	12.4-17.4	3.3-4.6	17.4-19.0	4.6-5.0
420F (Tier 2) 74.5 kW/100 hp	2.6-11.7	0.7-3.1	11.7-17.4	3.1-4.6	17.4-20.1	4.6-5.3
420F (Tier 4 Interim) 74.5 kW/100 hp	2.9-13.6	0.8-3.6	13.6-18.9	3.6-5.0	18.9-19.7	5.0-5.2
422F (Tier 2) 56.5 kW/75 hp	1.9-7.9	0.5-2.1	7.9-12.1	2.1-3.2	12.1-14.4	3.2-3.8
422F (Tier 2) 68.5 kW/92 hp	2.6-11.7	0.7-3.1	11.7-16.7	3.1-4.4	16.7-18.9	4.4-5.0
428F (Tier 2) 70 kW/94 hp	2.6-11.0	0.7-2.9	11.0-16.7	2.9-4.4	16.7-19.3	4.4-5.1
428F (Tier 2) 74.5 kW/100 hp	2.6-11.7	0.7-3.1	11.7-17.4	3.1-4.6	17.4-20.1	4.6-5.3
428F (Stage 3a) 70 kW/94 hp	2.6-11.0	0.7-2.9	11.0-16.7	2.9-4.4	16.7-19.3	4.4-5.1
428F (Stage 3a) 74.5 kW/100 hp	2.6-11.4	0.7-3.0	11.4-17.0	3.0-4.5	17.0-20.8	4.5-5.5
428F (Stage 3b) 70 kW/94 hp	2.6-12.4	0.7-3.3	12.4-17.4	3.3-4.6	17.4-19.0	4.6-5.0
428F (Stage 3b) 74.5 kW/100 hp	2.9-13.6	0.8-3.6	13.6-18.9	3.6-5.0	18.9-19.7	5.0-5.2
430F (Tier 2) 74.5 kW/100 hp	2.6-11.7	0.7-3.1	11.7-17.4	3.1-4.6	17.4-20.1	4.6-5.3
430F (Tier 4 Interim) 86 kW/115 hp	3.1-14.8	0.8-3.9	14.8-20.9	3.9-5.5	20.9-22.8	5.5-6.0
432F (Tier 2) 74.5 kW/100 hp	2.6-11.7	0.7-3.1	11.7-17.4	3.1-4.6	17.4-20.1	4.6-5.3
432F (Stage 3a) 74.5 kW/ 100 hp	2.6-11.4	0.7-3.0	11.4-17.0	3.0-4.5	17.0-20.8	4.5-5.5
432F (Stage 3b) 82 kW/110 hp	2.9-13.7	0.8-3.6	13.7-19.0	3.6-5.0	19.0-21.9	5.0-5.8
434F (Tier 2) 68.5 kW/92 hp	2.6-11.7	0.7-3.1	11.7-16.7	3.1-4.4	16.7-18.9	4.4-5.0
434F (Tier 2) 74.5 kW/100 hp	2.6-11.7	0.7-3.1	11.7-17.4	3.1-4.6	17.4-20.1	4.6-5.3
434F (Stage 3a) 70 kW/ 94 hp	2.6-11.0	0.7-2.9	11.0-16.7	2.9-4.4	16.7-19.3	4.4-5.1
434F (Stage 3a) 74.5 kW/100 hp	2.6-11.4	0.7-3.0	11.4-17.0	3.0-4.5	17.0-20.8	4.5-5.5
434F (Stage 3b) 74.5 kW/100 hp	2.9-13.6	0.8-3.6	13.6-18.9	3.6-5.0	18.9-19.7	5.0-5.2
444F (Tier 2) 74.5 kW/100 hp	2.6-11.7	0.7-3.1	11.7-17.4	3.1-4.6	17.4-20.1	4.6-5.3
444F (Stage 3a) 74.5 kW/100 hp	2.6-11.4	0.7-3.0	11.4-17.0	3.0-4.5	17.0-20.8	4.5-5.5
444F (Stage 3b) 82 kW/110 hp	2.9-13.7	0.8-3.6	13.7-19.0	3.6-5.0	19.0-21.9	5.0-5.8
450E (Tier 3) 102 kW/137 hp	3.1-13.6	0.8-3.6	13.6-21.9	3.6-5.8	21.9-26.1	5.8-6.9
450F (Tier 4 Interim) 106 kW/142 hp	3.3-16.2	0.9-4.3	16.2-23.1	4.3-6.1	23.1-27.1	6.1-7.2

Estimating Fuel Use

Also need an estimate for LF

Backhoe Loaders

Typical Application Description

(relative to work application)

- Low Light duty utility applications with intermittent cycles in light to medium soil. Trenching depths less than 1.83 m (6 feet).
- Medium General utility applications with regular cycles in medium to heavy soil. Dig depths to 3.05 m (10 feet). Occasional use of constant flow implements.
- High Production applications or digging in rock. Dig depths over 3.05 m (10 feet). Long cycle times or regular use of constant flow implements.

Load Factor Guide

(average engine load factor based on application description for each range)
 Low 20%-40%
 Medium 40%-65%
 High 65%-80%

Example

Extremely high variability in estimates of FF and LF

Example 420 F Backhoe (100 HP)

- FF ranges from 0.7 to 3.1 gal/h for Low Application
- LF ranges from 20% to 40%
 - Therefore, FC ranges from 0.14 to 1.24 gal/h (785% Difference)
 - That's only if we get the Application right

Maybe we should just use an average FF

Most textbooks use FF = 0.04 gal/hp-h

None of this helps with estimating emissions

Objectives

- 1. Evaluate the efficacy of FF = 0.04 gal/hp-h using real world, in-use equipment data;
- 2. Conduct an engine modal analysis of equipment data to determine the distribution of time, fuel use, and emissions over the full range of equipment engine loads;
- Compute weighted average fuel use and emissions rates based on the amount of time spent in each engine mode; and
- Develop a taxonomy of fuel use and emissions rates based on equipment type and EPA engine tier technology type.

Methodology

Collect real world fuel use and emissions data from HDD equipment in the field

Conduct an engine modal analysis to categorize the fuel consumption and emissions data according to engine load

Calculate weighted average fuel use and emissions rates based on the results of the engine modal analysis

> Develop a taxonomy of fuel use and emissions rates based on the modal weighted averages

Data Collection

Engine Modal Analysis

$$MAP_{norm} = \frac{MAP - Min MAP}{Max MAP - Min MAP} x 100$$
(2)
where: MAP_{norm} = normalized MAP value (%)
 MAP = instantaneous MAP measurement from PEMS (kilopascals)
 $Min MAP$ = minimum MAP measurement from PEMS (kilopascals)
 $Map = MAP$

Max MAP = maximum MAP measurement from PEMS (kilopascals)

Ho:
$$\mu = 0.04 \text{ gal/hp-h}$$
 Ha: $\mu \neq 0.04 \text{ gal/hp-h}$ (3)

Fuel Use & Emissions Rates

$$FC = \sum_{i=1}^{10} Ti \ x \ Fi$$
 (4)

where: FC = weighted average fuel consumption rate (gal/hp-h) Ti = time spent in mode i (%) Fi = fuel consumption rate in mode i (gal/hp-h)

$$ERj = \sum_{i=1}^{10} Ti \ x \ Eij \qquad (5)$$

where: ERj = weighted average emission rate for pollutant j (g/hp-h) Ti = time spent in mode i (%) Eij = emission rate in mode i for pollutant j (g/hp-h)

$$ER'j = \frac{ERj}{FC}$$
where: $ER'j$ = mass per fuel used weighted average emission rate for pollutant *j* (g/gal) (6)

Data Collection Results

E autinm ant	Horsepower	Displacement	Model	Engine
Equipment	(HP)	(L)	Year	Tier
Backhoe 1	88	4.0	2004	2
Backhoe 2	88	4.2	1999	1
Backhoe 3	88	4.2	2000	1
Backhoe 4	97	3.9	2004	2
Backhoe 5	99	4.5	1999	1
Backhoe 6	97	4.5	2004	2
Bulldozer 1	89	5.0	1988	0
Bulldozer 2	95	3.9	2002	1
Bulldozer 3	90	5.0	2003	1
Bulldozer 4	175	10.5	1998	1
Bulldozer 5	285	14.2	1995	0
Bulldozer 6	99	4.2	2005	2
Excavator 1	254	8.3	2001	1
Excavator 2	138	6.4	2003	2
Excavator 3	93	3.9	1998	1
Motor Grader 1	195	8.3	2001	1
Motor Grader 2	195	7.1	2004	2
Motor Grader 3	195	8.3	2001	1
Motor Grader 4	167	8.3	1990	0
Motor Grader 5	160	8.3	1993	0
Off-Road Truck 1	306	9.6	2005	2
Off-Road Truck 2	285	10.3	1998	1
Off-Road Truck 3	285	10.3	1998	1
Track Loader 1	121	7.2	1998	1
Track Loader 2	70	4.5	1997	0
Track Loader 3	127	7.2	2006	2
Wheel Loader 1	149	5.9	2004	2
Wheel Loader 2	130	5.9	2002	1
Wheel Loader 3	130	5.9	2002	1
Wheel Loader 4	126	5.9	2002	1
Wheel Loader 5	133	6.0	2005	2

Engine Modal Analysis

Modal Fuel Consumption Rates, Fi (gal/hp-h)										
Mode	BH	BD	EX	MG	OT	TL	WL	Average		
1	0.004	0.006	0.010	0.003	0.004	0.010	0.005	0.006		
2	0.008	0.013	0.013	0.009	0.012	0.013	0.009	0.011		
3	0.011	0.019	0.015	0.013	0.017	0.017	0.012	0.015		
4	0.014	0.024	0.018	0.016	0.021	0.028	0.016	0.019		
5	0.016	0.028	0.021	0.020	0.025	0.032	0.018	0.023		
6	0.019	0.032	0.023	0.024	0.029	0.035	0.021	0.026		
7	0.021	0.037	0.026	0.028	0.032	0.040	0.024	0.030		
8	0.024	0.042	0.028	0.032	0.035	0.048	0.028	0.034		
9	0.027	0.047	0.031	0.037	0.040	0.056	0.032	0.039		
10	0.030	0.050	0.033	0.042	0.043	0.063	0.039	0.043		
			Mo	dal Time, 7	Fi (%)					
Mode	BH	BD	EX	MG	OT	TL	WL	Average		
1	29%	25%	31%	24%	72%	27%	40%	35%		
2	26%	15%	5%	7%	10%	5%	20%	13%		
3	24%	16%	8%	10%	5%	4%	12%	11%		
4	10%	9%	8%	11%	3%	4%	8%	8%		
5	3%	7%	10%	10%	2%	8%	6%	6%		
6	2%	7%	11%	12%	2%	13%	4%	7%		
7	1%	5%	10%	12%	2%	9%	3%	6%		
8	2%	4%	9%	6%	2%	8%	3%	5%		
9	2%	7%	6%	5%	1%	9%	2%	5%		
10	1%	6%	2%	4%	1%	14%	1%	4%		

Modal Fuel Use vs. Modal Time

Sample Calculations

Mode	Ti (%)	Fi (gal/hp-h)	Ti × Fi (gal/hp-h)	Ei (g/hp-h)	Ti × Ei (g/hp-h)
1	29%	0.005	0.0015	1.1	0.3
2	26%	0.013	0.0034	2.4	0.6
3	24%	0.019	0.0045	3.3	0.8
4	10%	0.026	0.0026	4.4	0.4
5	3%	0.030	0.0010	4.9	0.2
6	2%	0.034	0.0007	5.3	0.1
7	1%	0.039	0.0006	5.9	0.1
8	2%	0.046	0.0009	7.6	0.1
9	2%	0.053	0.0008	9.3	0.1
10	1%	0.060	0.0007	10.9	0.1
	Weighted Ave	erage	0.017		2.9

Mass Per Time Taxonomy

Variable	Tier	BH	BD	EX	MG	OT	TL	WL	Average
FC (gal/hp-h)	Tier 0	0.017	0.024	0.025	0.026	0.011	0.031	0.017	0.022
	Tier 1	0.013	0.018	0.019	0.020	0.009	0.023	0.013	0.016
	Tier 2	0.012	0.015	0.016	0.016	0.009	0.018	0.012	0.014
NO	Tier 0	2.9	4.1	4.2	4.3	1.9	5.2	2.9	3.6
NO_{x}	Tier 1	1.7	2.2	2.3	2.4	1.2	2.7	1.7	2.0
(g/np-n)	Tier 2	1.2	1.5	1.5	1.5	1.0	1.7	1.2	1.4
HC	Tier 0	0.25	0.3	0.31	0.32	0.18	0.34	0.25	0.28
	Tier 1	0.17	0.2	0.21	0.22	0.13	0.23	0.17	0.19
(g/np-n)	Tier 2	0.15	0.16	0.16	0.17	0.12	0.17	0.14	0.15
CO	Tier 0	0.68	0.71	0.69	0.73	0.49	0.72	0.64	0.67
	Tier 1	0.43	0.59	0.61	0.61	0.33	0.75	0.44	0.54
(g/np-n)	Tier 2	0.39	0.39 0.44 0.44 0.44	0.46	0.29	0.49	0.38	0.41	
CO	Tier 0	175	251	264	275	116	325	178	226
$(\sigma/hn-h)$	Tier 1	136	192	203	212	95	247	139	175
(g/np-n)	Tier 2	127	162	167	172	99	195	128	150
	Tier 0	0.017	0.024	0.026	0.027	0.011	0.031	0.017	0.022
PM (g/hn-h)	Tier 1	0.014	0.020	0.021	0.022	0.010	0.027	0.014	0.018
(g/пр-п)	Tier 2	0.009	0.012	0.012	0.013	0.007	0.015	0.009	0.011

Mass Per Fuel Used Taxonomy

Variable	Tier	BH	BD	EX	MG	ΟΤ	TL	WL	Average
NO _x (g/gal)	Tier 0	171	171	168	165	173	168	171	169
	Tier 1	131	122	121	120	133	117	131	125
	Tier 2	100	100	94	94	111	94	100	99
	Tier 0	15	13	12	12	16	11	15	13
HC (rented)	Tier 1	13	11	11	11	14	10	13	12
(g/gal)	Tier 2 13 11	11	10	11	13	9	12	11	
	Tier 0	40	30	28	28	45	23	38	33
CO (g/gal)	Tier 1	33	33	32	31	37	33	34	33
(g/gal)	Tier 2	33	29	28	29	32	27	32	30
<u> </u>	Tier 0	10,300	10,500	10,600	10,600	10,500	10,500	10,500	10,500
CO_2	Tier 1	10,500	10,700	10,700	10,600	10,600	10,700	10,700	10,600
(g/gal)	Tier 2	10,600	10,800	10,400	10,700	11,000	10,800	10,700	10,700
	Tier 0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0
PM (g/gal)	Tier 1	1.1	1.1	1.1	1.1	1.1	1.2	1.1	1.1
	Tier 2	0.8	0.8	0.8	0.8	0.8	0.8	0.8	0.8

Conclusions

- FF = 0.04 gal/hp-h is a valid estimate for fuel factor in the absence of more refined data
- Modal time has an inverse relationship with modal fuel use
- Weighted average fuel use and emissions rates account for variability in engine load in equipment application so they do not need to be adjusted for engine load
- The taxonomy of fuel use and emissions rates is a valid and reliable guide for estimating the energy and environmental impacts of HDD equipment